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Abstract

Let @ be an m by n integer matrix of rank e and let o : Z"™ —
Z™ be the transformation given by a(zx) = Qz. We give an
new algorithm which, like earlier algorithms for the image
of a, computes the kernel of o using modular arithmetic.

1 Introduction

Let @ be an m by n integer matrix. In this paper we present
anew algorithm for computing the kernel of @, 1.e. the kernel
of the map

oa:Z" = 7Z", a:rw Qu

which is a homomorphism of lattices (see Section 2). Our
algorithm computes the uniquely determined basis of the
kernel of ¢ which is in Hermite normal form (see Section 2).

The computation of the integer kernel of an integer ma-
trix is necessary for the solution of important problems in
computational number theory. It is, for example, a key step
in the determination of a system of fundamental units of an
algebraic number field (see [1]). There are also applications
to group theory, since abelian groups are Z-modules (see for
example [9]).

The problem of computing the image of a (that is, the
HNF-basis of the image of ) has been studied extensively,
for example in [4], [10], [14], [15], [11]), [7], [6], [12], and
[8]. The first five of these algorithms suffer, to one degree or
another, from an explosion in the size of integers used in in-
termediate stages, a phenomenon known as entry explosion
which affects many algorithms over Z. The last four of these
algorithms use modular arithmetic, with the modulus being
any integer multiple of the determinant of the lattice gener-
ated by the columns of Q. Therefore, these algorithms avoid
entry explosion; we call them modular image algorithms.

Any algorithm for the image of « gives as output a ma-
trix Q' which is equivalent to @, that is, such that Q' = QU
for some unimodular n by n integer matrix U. One can
read off the kernel of a directly from U (see [5]), and so any
image algorithm which computes such a U is also a kernel
algorithm. Unfortunately, only the nonmodular image algo-
rithms cited above compute such a U, and so no modular
kernel algorithm is currently available.

Our new algorithm is such a modular kernel algorithm.
That is, it is an algorithm for the kernel of a which is an
analogue of the modular HNF-algorithms. It determines the
kernel of @@ by means of computations modulo the determi-
nant of a submatrix of @, thereby avoiding entry explosion.

More precisely, it proceeds in two steps.

Let e be the rank of . Then f = n — e is the dimension
of the kernel of Q.

First, a non-singular e by e submatrix @1 of @ is com-
puted, and d = | det @1 | and adj @; are determined. This is
achieved by means of a modification of the chinese remain-
dering algorithm of Hafner and McCurley [8]. By swapping
columns and rows, the matrix @} is transformed into the form

_ [ @ @
@= ( Q Qi
It is easy to deduce the kernel of the original matrix from

the kernel of the transformed matrix. Further, we show by
an easy argument that we may assume

Q=(Q @), d>o

In the second step, using the kernel of ¢ mod d, i.e. com-
putations modulo d, an integer f by f matrix S; is deter-
mined such that

R ( - ;;262252 ) _ ( ~(adQ1)@252/d ) a
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is an integer matrix in Hermite normal form (see Section 2)
whose columns form a basis of the kernel of Q. It is easy
to compute R from the above formula, or to retain it in a
product representation (which may be preferable).

In the course of the paper, we will prove that the above
algorithm is correct. We will also prove complexity results
as in the following theorem. Let z = min{m, n}, let ||Q|| be
the maximum of the absolute values of the entries of ¢}, and
let L = zlog(z]|Q||). Arithmetic operations on integers are
addition, subtraction, multiplication, division with remain-
der, and extended gcd. We say that an integer z is of size s
if the number of bits in its binary expansion is bounded by
s.

Theorem 1 The algorithm given above correctly computes
a matriz R whose columns form a basis of the kernel of Q.
Further,

1. the computation of Q1, adj @1, and d = |det Q1| can
be accomplished using O(emnz) arithmetic operations
on integers of size O(L), and

2. the computation of Sz can be accomplished using
O(en2) arithmetic operations on integers of size

O(logd).



Note that the smaller d and the entries of adj @} are, the
faster and more space-efficient our algorithm is.

The rest of the paper is organized as follows. Throughout
the paper, we let @ be a given m by n integer matrix. In
section 2 we set up notation and other preliminaries. In
section 3 we describe the computation of the objects @1, d,
and adj @ and reduce the problem to the case

Q=(Q @), d>o.

In section 4, we give conditions that are to be satisfied by
a matrix S, of which the matrix Sz will be a submatrix,
and we prove that the columns of the matrix R defined by
(1) indeed form the HNF-basis of the kernel of . Then in
section 5, we show how to compute a matrix S meeting the
given conditions. In section 6, we prove Theorem 1. Finally,
in section 7, we work out an example using our algorithm,
and in section 8 we give some timings for an implementation
of the algorithm, using various input matrices with small
entries.
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2 Preliminaries

Let m and n be positive integers and R a ring. We write
Mat,,,» (R) for the set of all matrices with m rows and n
columns and entries in R. If X € Mat,, ,(R) then we write
x;; for the entry of X in the sth row and jth column and
x; for the column vector equal to the jth column of X. If
x 1s a vector in R™ then we write z[i] for the ith entry of
z, and we define the last entry function v(x) by declaring
that v(x) is the index of the last nonzero entry in z, i.e. the
integer such that

z[v(=)] # 0,

The 1th standard basis vector of R™, denoted e;, is the vector
of R"™ whose ith entry is 1 and whose other entries are zero.

If R is a ring, then by the terms kernel and image of
X € Mat,, »(R) we shall always mean the kernel and image
of the homomorphism

zly(z)+ 1] =z[y(z)+ 2] =... = z[m]=0.

Z" = 7™M, v Xv.

If X is a matrix with entries in Z then we define
||X|| = max {|zi;|}. Note that if X € Maty, ,(Z) and
Y € Mat, ,(Z) then | XY < ] XI[[V]|

If m is a positive integer and X is a matrix in Mat, , (Z)
with nonzero determinant, then the adjoint of X, denoted
adj X, is the unique matrix Y € Mat, ;»(Z) such that

XY =YX = (det X)I

where [ is the identity matrix in Mat, »(Z). If YV is the
adjoint of X then

Yig = (_l)iﬂdﬂ'
where dj; is the determinant of the submatrix X' obtained

by removing row j and column 2 from X. Note that adj X =

(det X)X T,

Suppose that X is a matrix in Maty, ,»(Z). It follows
from Hadamard’s inequality (proved in [5], Corollary 2.5.5,
for example) that

|det X| < (m[|X|)™ and [ladjX]|| < ((m—D]X|)"".

A matrix H € Mat,, »(Z) is in Hermite normal form if
there exists an integer r < n such that the first r columns of
H are 0 and, when r+1 < j < k < n, we have vy(h;) < v(hx),
h’y(hj),] >1and 0 < h’y(hj),k < h’y(hj),]' If X is any ma-
trix in Mat,, »(Z), then there is a unimodular matrix U in
Mat, ,(Z) such that XU is in Hermite normal form (see
[13], Theorem II.2). The matrix U is not uniquely deter-
mined but the matrix XU is unique; XU is called the Her-
mite normal form of X.

We say that a matrix H € Mat,, »(Z) is in triangular
Hermite normal form if the following three conditions are
met:

1. m >n,
2. H is in Hermite normal form, and
3. y(hi) =(m —n)+iforeach: € {1,2,...,n}.

A lattice is an additive subgroup L of R¥ for some posi-
tive integer k which as a point set is discrete; all our lattices
will be subsets of the lattice Z*. The lattice L can be written
as L = th‘:l Zb; with 0 < t < k and linearly independent
vectors bi,b2,...,by € L. The integer t is an invariant of
L, called the dimension of L. The sequence (by,...,b;) is
called a basis of L, and the matriz B associated to this basis
is the k& by ¢ integer matrix whose jth column is the vector
b;. A lattice has many bases, but a canonical one exists,
namely the basis whose associated matrix is in Hermite nor-
mal form; this basis is called the HNF-basis of the lattice.

As usual, if n is an integer then lg n is the number of bits
in the binary representation of n. We use the term “arith-
metic operation” to mean one of the following operations on
two integers: addition, subtraction, multiplication, division
with remainder, and extended gcd.

3 Computing @1, d, adj Q13 reductions

We use a modification of an algorithm of Hafner and Mc-
Curley [8] to compute Q1, d, and adj @:. That algorithm
computes e = rank(Q), a nonsingular e by e submatrix
of @, and the determinant of Q1. We sketch the original al-
gorithm, adding to it the computation of the adjoint adj @ .
Let z = min{m, n}. First, the algorithm determines a posi-
tive integer h with

h = O(zlog(z]|Q|)))

such that there is a prime number p < z for which the rank
of @ modulo p is €, i.e. the rank of Q. For each prime p < h
the algorithm determines the rank e, of @ mod p and a
submatrix Y, of () whose rank mod p is e,. If ¢ is a prime
with e, = max{e, : p < h} then e = e, and we set Q1 = Yj.
Then det (1 and adj @1 can be computed using Gaussian
elimination and Chinese remaindering.

Now we show how, once @1, d, and adj@: have been
computed, we may reduce to the case

Q=(Q1 Q)



where d = det 1 > 0. Let e be the rank of ¢ and set
f = n —e. By swapping columns and rows we transform @

into the form
(5 %)
T\ Q: Qa

Q1 € Mat. .(Z), Q. € Mat. ((Z),
Qs € Maty_..(Z), Qi€ Mat,_. ;(Z).

By swapping at most one more row, we can ensure that
det @1 > 0. If we know the kernel of the transformed matrix,
it is easy to determine the kernel of the original matrix. We
have therefore reduced to the case

with

Q=<8; gj ) d=det Q1 > 0.

We further reduce by proving the following result.

Proposition 1 The kernel of Q is the kernel of Q' =
(o ).

Proof Clearly the kernel of @ is a subset of the kernel of @Q';
we proceed to show the reverse inclusion. Since the rank of
Q is e there is a matrix T' € Mat,,_. .(Q) such that

Ql
(%)

If x is in the kernel of @' then

o-(%.)- (3

so x is in the kernel of Q. O

Thus we can assume, in addition to the condition d > 0,

that
Q=(Q @),

or in other words that @ is of rank m.

4 R is the kernel of @

In this section we give conditions which a matrix S is to
satisfy; the matrix Sz will be a submatrix of S. Then we
prove that the matrix R given by (1) is indeed the unique
matrix in Hermite normal form whose columns generate the
kernel of (2. The reductions outlined in the previous section
mean that we may assume that @ is of rank m, with ¢J; the
submatrix formed by the first m columns of @, and d > 0.
To describe our algorithm we need some notation. Let

®={reZ": Qv =0modd}.
Also, for 7 € {0,1,2,...,n} we set

;, = {re€d|z[j+1]=...=2[n] =0},
¢; = {c€Z]|z[j]=cforsomexz € P}

Note that ®; is a sublattice of Z" and ¢; is a Z-ideal for
0 < 3 < n. Further,

{0} =%, CcPC...CP,=9.

We will show below how to construct a matrix S €&
Mat,, ;(Z) with the following properties:

1. @S =0 mod d,
2. all entries of S lie in {0,1,...,d},
3. S is in triangular Hermite normal form, and

4. the entry sm4;,; of S generates ¢4, for each j =
1,2,...,f.

Assume that S is known and write
S
S = S, s S1 € Matmyf(z)752 (S Matfyf(Z).

Let
R ( ~Qr @25 ) _ ( —(adj Q1)Q28: /d )
2

S2

Theorem 2 The matriz R has integer entries, it is in tri-
angular Hermate normal form, and its columns form a basis

of the kernel of Q.

Proof We show that R has integer entries. We know that
QS = 0modd. This means that Q151 + Q252 = dS; with
Ss € Mat, ;(Z). Therefore, Ql_lQQSQ = dQl_lsg — 5.
Since both dQl_1 = adj @1 and S; are integer matrices it
follows that Ql_lQQSQ is also an integer matrix. Note that
R is in triangular Hermite normal form because S is in tri-
angular Hermite normal form and the last f rows of R and
S are identical.
Note that

QR

(o o) 9 )
=-S5+ @25 =0

so the columns of R belong to the kernel of Q.

[t remains to be shown that the columns of R form a basis
of the kernel of (J. Let T' be the unique matrix in Hermite
normal form whose columns generate the kernel of Q. Since
1 is nonsingular, 7' must be in triangular Hermite normal
form. For j € {0,---, f}, let L; be the lattice generated by
the first 5 columns of R and let L} be the lattice generated
by the first j columns of 1. Clearly, L; C L; for each j.
We now prove, by induction on j, that L; CL; Fory=0
the assertion is trivially correct. Suppose that the assertion
holds for each j' < j. We have t; € ®; 50 timyj,; € @5
Since rp;4j,; generates ¢, there must be an integer ¢ such
that tyyj; = crm+j,;. Hence, t; —cr; € L;_1. Applying
the induction hypothesis, we see that t; € L; and it follows
immediately that L; C L;, completing the induction. Now
we know that L; = L; for each j; applying this with j =n
shows that the columns of R form a basis of the kernel of

Q. O

5 Computation of S

In this section, we show how to compute the matrix S using
computations mod d.

We use an algorithm from [3] to compute the matrix
Y € Mat,, ,(Z) in Hermite normal form which satisfies the
following conditions:

1. The entries of Y lie in {0,1,...,d — 1}.



2. The columns of Y together with de1,...,de, generate
the lattice ®.

3. For j € {1,...,r} the v(y;)th entry of y; generates the
ideal ¢y,

We describe the algorithm which we use to produce Y.
The proofs can be found in [3]. First, we reduce  modulo
d, obtaining a matrix Q € Mat . »(Z/dZ), and we set a
matrix T equal to the identity in Maty, ,(Z/dZ). Next,

we begin a loop which will process each row of @ in turn,
starting with the mth. The loop variable ¢ is initialized to
m and decreases on each pass until it reaches 1. In the sth
pass through the loop, we perform the following two steps.

1. Use Gaussian elimination in Z/dZ to zero out all but
the last of the entries in the ith row of Q (an analogue
of the usual extended gcd algorithm allows us to do
this); perform all the same column operations on 7.

2. Let a be the remaining nonzero element of the tth row;
if ab = 0 for some nonzero b € Z/dZ, then multiply the
last column of @ by b and multiply the last column of
T by b also. If, on the other hand, a is a unit, then
delete the last column of @ (but not the last column of
7).

When the loop is complete, the columns of 7' gener-
ate the kernel of Q. Now let A be the zero matrix in
Mat,m(Z/dZ). We apply a similar loop to T. The loop
variable is again ¢ and it decreases from m to 1. In the ith
pass through the loop, we perform the following three steps.

1. Use Gaussian elimination in Z/dZ to zero out all but
the last of the entries in the sth row of 7'

2. Store the last column of 7' in the ith column of A;
multiply a; by a suitable element of Z/dZ so that the
last nonzero entry of a; is a divisor of d.

3. Let a be the remaining nonzero element of the ith row;
if ab = 0 for some nonzero b € Z/dZ, then multiply
the last column of T by b. If, on the other hand, a is a
unit, then delete the last column of 7'

When the loop is complete, the columns of A generate
the same submodule of (Z/dZ)™ as the columns of the orig-
inal matrix T, i.e. the kernel of Q. We now delete all zero
columns of A and lift the resulting matrix to Z, using the
representatives {0,1,2,...,d — 1}; the result is the desired
matrix Y.

We now show how to construct S from Y. Construct an
upper triangular matrix Z as follows. For 7 € {1,2,...,n}
the jth column of Z is the column y of Y with v(y) = j if
such a column exists. Otherwise it is de;. Then S is the
matrix consisting of the last f columns of 7.

We prove that S has the desired properties. By con-
struction, we have @S = Omodd. Since Y is in Hermite
normal form, S is in triangular Hermite normal form. Fi-
nally, we must show that the entry sc4; ; generates ¢4 ; for
1 < 5 < f. If the gth column of S is equal to a column of Y
this is true because of the corresponding property of Y. As-
sume that the jth column of S is de.y;. Since the columns
of Y together with the vectors de;, 1 < 7 < n generate ¢ it
follows that ¢; = d.

6 Analysis

The correctness of the algorithm given above is obvious
from Theorem 2. We complete the proof of Theorem 1
by verifying the time and space bounds given there. Let
N = max {m,n}, z = min {m,n}, L =log z||Q||. The anal-
ysis of [8] shows that the computation of Q1, d, and adj Q1
can be accomplished with O(emnz) arithmetic operations
on integers of size O(L) (our addition of the computation
of adj@: does not change the bound). The reduction to
the case rank @ = m, d > 0 involves only row and column
swaps, not arithmetic. It takes en arithmetic operations on
numbers no larger than ||Q|| to reduce @ modulo d, and the
analysis of [3] says that O(en?®) arithmetic operations on
numbers no larger than d are required for the remainder of
the computation of S outlined above. This proves Theorem
1.

7 Example

We work out the example
4 2 1 1
O=(2 11 4
6 3 2 5

We compute easily that e = 2, f = 2. Swapping rows and
columns and then discarding the last row, we get

2 6 3 5
Q:<1421)'

Write @ = ( @1 Q> ) with both Q1 and Q> in Mat. »(Z).

We easily compute that d = 2, so (1 is nonsingular, and that

ade1=<_41 _26)

(Of course we could achieve the conditions on }; and d with
many other sets of row and column swaps.)
It is not hard to verify that (using the notation of section

5)

0 1 2 0 0 1
10 01 00
Y =101 “4=lo0oo0 21 |
0 1 00 0 1
0 1
0 0 2 1
5221752:<01)'
0 1

A simple application of the formula of Theorem 2 then gives

0 -7
-1 1
R= 2 1
0 1

which indeed is the HNF-basis for the kernel of ¢ as modified
in the first step. To recover the kernel of the original @, we
swap rows in a manner consistent with the swaps of columns
used earlier; the result is



8 Timings

In this section we give a brief indication of the behavior
of an implementation of the algorithm using the LiDIA [2]
number theory library. We report the CPU time required
to run the implementation on a SPARC Ultra for matrices
of various sizes. In each case the entries of the matrix were
randomly selected from the set {0,1,2,...,10}. (Matrices
with such small entries are those for which our algorithm is
most likely to be practical; larger entries, of course, produce

larger d’s.)
Dimensions Time required
50x51 4.82 s
50x75 831s
80x81 32.72 s
80x120 56.96 s
100x101 1 m 26.06 s
100x150 2 m 46.76 s
130x131 4 m 37.01 s
130x200 9m 22.44 s
150x151 9m 2.06 s
150x200 14 m 9.29 s
180x181 2l m 4.15 s
180x240 33 m 27.81 s
200x201 35 m 16.23 s
200x250 50 m 0.64 s
250x251 1h38m285s
250x325 2 h 31 m 58.89 s
300x301 3h54m48.17 s
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