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Abstra
t

Let Q be anm by n integer matrix of rank e and let � : Z

n

!

Z

m

be the transformation given by �(x) = Qx. We give an

new algorithm whi
h, like earlier algorithms for the image

of �, 
omputes the kernel of � using modular arithmeti
.

1 Introdu
tion

Let Q be anm by n integer matrix. In this paper we present

a new algorithm for 
omputing the kernel of Q, i.e. the kernel

of the map

� : Z

n

! Z

m

; � : x 7! Qx

whi
h is a homomorphism of latti
es (see Se
tion 2). Our

algorithm 
omputes the uniquely determined basis of the

kernel of Q whi
h is in Hermite normal form (see Se
tion 2).

The 
omputation of the integer kernel of an integer ma-

trix is ne
essary for the solution of important problems in


omputational number theory. It is, for example, a key step

in the determination of a system of fundamental units of an

algebrai
 number �eld (see [1℄). There are also appli
ations

to group theory, sin
e abelian groups are Z-modules (see for

example [9℄).

The problem of 
omputing the image of � (that is, the

HNF-basis of the image of �) has been studied extensively,

for example in [4℄, [10℄, [14℄, [15℄, [11℄), [7℄, [6℄, [12℄, and

[8℄. The �rst �ve of these algorithms su�er, to one degree or

another, from an explosion in the size of integers used in in-

termediate stages, a phenomenon known as entry explosion

whi
h a�e
ts many algorithms over Z. The last four of these

algorithms use modular arithmeti
, with the modulus being

any integer multiple of the determinant of the latti
e gener-

ated by the 
olumns of Q. Therefore, these algorithms avoid

entry explosion; we 
all them modular image algorithms.

Any algorithm for the image of � gives as output a ma-

trix Q

0

whi
h is equivalent to Q, that is, su
h that Q

0

= QU

for some unimodular n by n integer matrix U . One 
an

read o� the kernel of � dire
tly from U (see [5℄), and so any

image algorithm whi
h 
omputes su
h a U is also a kernel

algorithm. Unfortunately, only the nonmodular image algo-

rithms 
ited above 
ompute su
h a U , and so no modular

kernel algorithm is 
urrently available.

Our new algorithm is su
h a modular kernel algorithm.

That is, it is an algorithm for the kernel of � whi
h is an

analogue of the modular HNF-algorithms. It determines the

kernel of Q by means of 
omputations modulo the determi-

nant of a submatrix of Q, thereby avoiding entry explosion.

More pre
isely, it pro
eeds in two steps.

Let e be the rank of Q. Then f = n� e is the dimension

of the kernel of Q.

First, a non-singular e by e submatrix Q

1

of Q is 
om-

puted, and d = jdetQ

1

j and adjQ

1

are determined. This is

a
hieved by means of a modi�
ation of the 
hinese remain-

dering algorithm of Hafner and M
Curley [8℄. By swapping


olumns and rows, the matrix Q is transformed into the form

Q =

�

Q

1

Q

2

Q

3

Q

4

�

It is easy to dedu
e the kernel of the original matrix from

the kernel of the transformed matrix. Further, we show by

an easy argument that we may assume

Q =

�

Q

1

Q

2

�

; d > 0:

In the se
ond step, using the kernel of Qmod d, i.e. 
om-

putations modulo d, an integer f by f matrix S

2

is deter-

mined su
h that

R =

�

�Q

�1

1

Q

2

S

2

S

2

�

=

�

�(adjQ

1

)Q

2

S

2

=d

S

2

�

(1)

is an integer matrix in Hermite normal form (see Se
tion 2)

whose 
olumns form a basis of the kernel of Q. It is easy

to 
ompute R from the above formula, or to retain it in a

produ
t representation (whi
h may be preferable).

In the 
ourse of the paper, we will prove that the above

algorithm is 
orre
t. We will also prove 
omplexity results

as in the following theorem. Let z = minfm;ng, let jjQjj be

the maximum of the absolute values of the entries of Q, and

let L = z log(zjjQjj). Arithmeti
 operations on integers are

addition, subtra
tion, multipli
ation, division with remain-

der, and extended g
d. We say that an integer x is of size s

if the number of bits in its binary expansion is bounded by

s.

Theorem 1 The algorithm given above 
orre
tly 
omputes

a matrix R whose 
olumns form a basis of the kernel of Q.

Further,

1. the 
omputation of Q

1

, adjQ

1

, and d = jdetQ

1

j 
an

be a

omplished using O(emnz) arithmeti
 operations

on integers of size O(L), and

2. the 
omputation of S

2


an be a

omplished using

O(en

2

) arithmeti
 operations on integers of size

O(log d).

1



Note that the smaller d and the entries of adjQ are, the

faster and more spa
e-eÆ
ient our algorithm is.

The rest of the paper is organized as follows. Throughout

the paper, we let Q be a given m by n integer matrix. In

se
tion 2 we set up notation and other preliminaries. In

se
tion 3 we des
ribe the 
omputation of the obje
ts Q

1

, d,

and adjQ

1

and redu
e the problem to the 
ase

Q =

�

Q

1

Q

2

�

; d > 0:

In se
tion 4, we give 
onditions that are to be satis�ed by

a matrix S, of whi
h the matrix S

2

will be a submatrix,

and we prove that the 
olumns of the matrix R de�ned by

(1) indeed form the HNF-basis of the kernel of Q. Then in

se
tion 5, we show how to 
ompute a matrix S meeting the

given 
onditions. In se
tion 6, we prove Theorem 1. Finally,

in se
tion 7, we work out an example using our algorithm,

and in se
tion 8 we give some timings for an implementation

of the algorithm, using various input matri
es with small

entries.

The authors would like to express their thanks to the

members of the LiDIA-Group at the TU-Darmstadt, espe-


ially Volker M�uller, for helpful 
onversations. The se
ond

author a
knowledges support from a National S
ien
e Foun-

dation Graduate Fellowship.

2 Preliminaries

Let m and n be positive integers and R a ring. We write

Mat

m;n

(R) for the set of all matri
es with m rows and n


olumns and entries in R. If X 2Mat

m;n

(R) then we write

x

ij

for the entry of X in the ith row and jth 
olumn and

x

j

for the 
olumn ve
tor equal to the jth 
olumn of X. If

x is a ve
tor in R

m

then we write x[i℄ for the ith entry of

x, and we de�ne the last entry fun
tion 
(x) by de
laring

that 
(x) is the index of the last nonzero entry in x, i.e. the

integer su
h that

x[
(x)℄ 6= 0; x[
(x) + 1℄ = x[
(x) + 2℄ = : : : = x[m℄ = 0:

The ith standard basis ve
tor of R

n

, denoted e

i

, is the ve
tor

of R

n

whose ith entry is 1 and whose other entries are zero.

If R is a ring, then by the terms kernel and image of

X 2Mat

m;n

(R) we shall always mean the kernel and image

of the homomorphism

Z

n

! Z

m

; v 7! Xv:

If X is a matrix with entries in Z then we de�ne

kXk = max fjx

ij

jg. Note that if X 2 Mat

m;n

(Z) and

Y 2Mat

n;p

(Z) then kXY k � nkXkkY k.

Ifm is a positive integer andX is a matrix inMat

m;m

(Z)

with nonzero determinant, then the adjoint of X, denoted

adjX, is the unique matrix Y 2Mat

m;m

(Z) su
h that

XY = Y X = (detX)I

where I is the identity matrix in Mat

m;m

(Z). If Y is the

adjoint of X then

y

ij

= (�1)

i+j

d

ji

where d

ji

is the determinant of the submatrix X

0

obtained

by removing row j and 
olumn i from X. Note that adjX =

(detX)X

�1

.

Suppose that X is a matrix in Mat

m;m

(Z). It follows

from Hadamard's inequality (proved in [5℄, Corollary 2.5.5,

for example) that

jdetXj � (mkXk)

m

and k adjXk � ((m� 1)kXk)

m�1

:

A matrix H 2Mat

m;n

(Z) is in Hermite normal form if

there exists an integer r � n su
h that the �rst r 
olumns of

H are 0 and, when r+1 � j < k � n, we have 
(h

j

) < 
(h

k

),

h


(h

j

);j

� 1 and 0 � h


(h

j

);k

< h


(h

j

);j

. If X is any ma-

trix in Mat

m;n

(Z), then there is a unimodular matrix U in

Mat

n;n

(Z) su
h that XU is in Hermite normal form (see

[13℄, Theorem II.2). The matrix U is not uniquely deter-

mined but the matrix XU is unique; XU is 
alled the Her-

mite normal form of X.

We say that a matrix H 2 Mat

m;n

(Z) is in triangular

Hermite normal form if the following three 
onditions are

met:

1. m � n,

2. H is in Hermite normal form, and

3. 
(h

i

) = (m� n) + i for ea
h i 2 f1; 2; : : : ; ng.

A latti
e is an additive subgroup L of R

k

for some posi-

tive integer k whi
h as a point set is dis
rete; all our latti
es

will be subsets of the latti
e Z

k

. The latti
e L 
an be written

as L =

P

t

i=1

Zb

i

with 0 � t � k and linearly independent

ve
tors b

1

; b

2

; : : : ; b

t

2 L. The integer t is an invariant of

L, 
alled the dimension of L. The sequen
e (b

1

; : : : ; b

t

) is


alled a basis of L, and the matrix B asso
iated to this basis

is the k by t integer matrix whose jth 
olumn is the ve
tor

b

j

. A latti
e has many bases, but a 
anoni
al one exists,

namely the basis whose asso
iated matrix is in Hermite nor-

mal form; this basis is 
alled the HNF-basis of the latti
e.

As usual, if n is an integer then lg n is the number of bits

in the binary representation of n. We use the term \arith-

meti
 operation" to mean one of the following operations on

two integers: addition, subtra
tion, multipli
ation, division

with remainder, and extended g
d.

3 Computing Q

1

, d, adjQ

1

; redu
tions

We use a modi�
ation of an algorithm of Hafner and M
-

Curley [8℄ to 
ompute Q

1

, d, and adjQ

1

. That algorithm


omputes e = rank(Q), a nonsingular e by e submatrix Q

1

of Q, and the determinant of Q

1

. We sket
h the original al-

gorithm, adding to it the 
omputation of the adjoint adjQ

1

.

Let z = minfm;ng. First, the algorithm determines a posi-

tive integer h with

h = O(z log(zkQk))

su
h that there is a prime number p � z for whi
h the rank

of Q modulo p is e, i.e. the rank of Q. For ea
h prime p � h

the algorithm determines the rank e

p

of Q mod p and a

submatrix Y

p

of Q whose rank mod p is e

p

. If q is a prime

with e

q

= maxfe

p

: p � hg then e = e

q

and we set Q

1

= Y

q

.

Then detQ

1

and adjQ

1


an be 
omputed using Gaussian

elimination and Chinese remaindering.

Now we show how, on
e Q

1

, d, and adjQ

1

have been


omputed, we may redu
e to the 
ase

Q =

�

Q

1

Q

2

�

2



where d = detQ

1

> 0. Let e be the rank of Q and set

f = n� e. By swapping 
olumns and rows we transform Q

into the form

Q =

�

Q

1

Q

2

Q

3

Q

4

�

with

Q

1

2Mat

e;e

(Z); Q

2

2Mat

e;f

(Z);

Q

3

2Mat

m�e;e

(Z); Q

4

2Mat

m�e;f

(Z):

By swapping at most one more row, we 
an ensure that

detQ

1

> 0. If we know the kernel of the transformed matrix,

it is easy to determine the kernel of the original matrix. We

have therefore redu
ed to the 
ase

Q =

�

Q

1

Q

2

Q

3

Q

4

�

; d = detQ

1

> 0:

We further redu
e by proving the following result.

Proposition 1 The kernel of Q is the kernel of Q

0

=

�

Q

1

Q

2

�

.

Proof Clearly the kernel of Q is a subset of the kernel of Q

0

;

we pro
eed to show the reverse in
lusion. Sin
e the rank of

Q is e there is a matrix T 2Mat

m�e;e

(Q) su
h that

Q =

�

Q

0

TQ

0

�

If x is in the kernel of Q

0

then

Qx =

�

Q

0

x

TQ

0

x

�

=

�

0

0

�

so x is in the kernel of Q. 2

Thus we 
an assume, in addition to the 
ondition d > 0,

that

Q =

�

Q

1

Q

2

�

;

or in other words that Q is of rank m.

4 R is the kernel of Q

In this se
tion we give 
onditions whi
h a matrix S is to

satisfy; the matrix S

2

will be a submatrix of S. Then we

prove that the matrix R given by (1) is indeed the unique

matrix in Hermite normal form whose 
olumns generate the

kernel of Q. The redu
tions outlined in the previous se
tion

mean that we may assume that Q is of rank m, with Q

1

the

submatrix formed by the �rst m 
olumns of Q, and d > 0.

To des
ribe our algorithm we need some notation. Let

� = fx 2 Z

n

: Qx � 0mod dg:

Also, for j 2 f0; 1; 2; : : : ; ng we set

�

j

= fx 2 � j x[j + 1℄ = : : : = x[n℄ = 0g;

�

j

= f
 2 Z j x[j℄ = 
 for some x 2 �

j

g:

Note that �

j

is a sublatti
e of Z

n

and �

j

is a Z-ideal for

0 � j � n. Further,

f0g = �

0

� �

1

� : : : � �

n

= �:

We will show below how to 
onstru
t a matrix S 2

Mat

n;f

(Z) with the following properties:

1. QS � 0 mod d,

2. all entries of S lie in f0; 1; : : : ; dg,

3. S is in triangular Hermite normal form, and

4. the entry s

m+j;j

of S generates �

m+j

for ea
h j =

1; 2; : : : ; f .

Assume that S is known and write

S =

�

S

1

S

2

�

; S

1

2Mat

m;f

(Z); S

2

2Mat

f;f

(Z):

Let

R =

�

�Q

�1

1

Q

2

S

2

S

2

�

=

�

�(adjQ

1

)Q

2

S

2

=d

S

2

�

:

Theorem 2 The matrix R has integer entries, it is in tri-

angular Hermite normal form, and its 
olumns form a basis

of the kernel of Q.

Proof We show that R has integer entries. We know that

QS � 0mod d. This means that Q

1

S

1

+ Q

2

S

2

= dS

3

with

S

3

2 Mat

e;f

(Z). Therefore, Q

�1

1

Q

2

S

2

= dQ

�1

1

S

3

� S

1

.

Sin
e both dQ

�1

1

= adjQ

1

and S

1

are integer matri
es it

follows that Q

�1

1

Q

2

S

2

is also an integer matrix. Note that

R is in triangular Hermite normal form be
ause S is in tri-

angular Hermite normal form and the last f rows of R and

S are identi
al.

Note that

QR =

�

Q

1

Q

2

�

�

�Q

�1

1

Q

2

S

2

S

2

�

= �Q

2

S

2

+Q

2

S

2

= 0

so the 
olumns of R belong to the kernel of Q.

It remains to be shown that the 
olumns ofR form a basis

of the kernel of Q. Let T be the unique matrix in Hermite

normal form whose 
olumns generate the kernel of Q. Sin
e

Q

1

is nonsingular, T must be in triangular Hermite normal

form. For j 2 f0; � � � ; fg, let L

j

be the latti
e generated by

the �rst j 
olumns of R and let L

0

j

be the latti
e generated

by the �rst j 
olumns of T . Clearly, L

j

� L

0

j

for ea
h j.

We now prove, by indu
tion on j, that L

0

j

� L

j

. For j = 0

the assertion is trivially 
orre
t. Suppose that the assertion

holds for ea
h j

0

< j. We have t

j

2 �

j

so t

m+j;j

2 �

j

.

Sin
e r

m+j;j

generates �

j

there must be an integer 
 su
h

that t

m+j;j

= 
r

m+j;j

. Hen
e, t

j

� 
r

j

2 L

j�1

. Applying

the indu
tion hypothesis, we see that t

j

2 L

j

and it follows

immediately that L

0

j

� L

j

, 
ompleting the indu
tion. Now

we know that L

0

j

= L

j

for ea
h j; applying this with j = n

shows that the 
olumns of R form a basis of the kernel of

Q. 2

5 Computation of S

In this se
tion, we show how to 
ompute the matrix S using


omputations mod d.

We use an algorithm from [3℄ to 
ompute the matrix

Y 2Mat

n;r

(Z) in Hermite normal form whi
h satis�es the

following 
onditions:

1. The entries of Y lie in f0; 1; : : : ; d� 1g.

3



2. The 
olumns of Y together with de

1

; : : : ; de

n

generate

the latti
e �.

3. For j 2 f1; : : : ; rg the 
(y

j

)th entry of y

j

generates the

ideal �


(y

j

)

.

We des
ribe the algorithm whi
h we use to produ
e Y .

The proofs 
an be found in [3℄. First, we redu
e Q modulo

d, obtaining a matrix Q 2 Mat

m;n

(Z=dZ), and we set a

matrix T equal to the identity in Mat

n;n

(Z=dZ). Next,

we begin a loop whi
h will pro
ess ea
h row of Q in turn,

starting with the mth. The loop variable i is initialized to

m and de
reases on ea
h pass until it rea
hes 1. In the ith

pass through the loop, we perform the following two steps.

1. Use Gaussian elimination in Z=dZ to zero out all but

the last of the entries in the ith row of Q (an analogue

of the usual extended g
d algorithm allows us to do

this); perform all the same 
olumn operations on T .

2. Let a be the remaining nonzero element of the ith row;

if ab = 0 for some nonzero b 2 Z=dZ, then multiply the

last 
olumn of Q by b and multiply the last 
olumn of

T by b also. If, on the other hand, a is a unit, then

delete the last 
olumn of Q (but not the last 
olumn of

T ).

When the loop is 
omplete, the 
olumns of T gener-

ate the kernel of Q. Now let A be the zero matrix in

Mat

m;m

(Z=dZ). We apply a similar loop to T . The loop

variable is again i and it de
reases from m to 1. In the ith

pass through the loop, we perform the following three steps.

1. Use Gaussian elimination in Z=dZ to zero out all but

the last of the entries in the ith row of T .

2. Store the last 
olumn of T in the ith 
olumn of A;

multiply a

i

by a suitable element of Z=dZ so that the

last nonzero entry of a

i

is a divisor of d.

3. Let a be the remaining nonzero element of the ith row;

if ab = 0 for some nonzero b 2 Z=dZ, then multiply

the last 
olumn of T by b. If, on the other hand, a is a

unit, then delete the last 
olumn of T .

When the loop is 
omplete, the 
olumns of A generate

the same submodule of (Z=dZ)

m

as the 
olumns of the orig-

inal matrix T , i.e. the kernel of Q. We now delete all zero


olumns of A and lift the resulting matrix to Z, using the

representatives f0; 1; 2; : : : ; d � 1g; the result is the desired

matrix Y .

We now show how to 
onstru
t S from Y . Constru
t an

upper triangular matrix Z as follows. For j 2 f1; 2; : : : ; ng

the jth 
olumn of Z is the 
olumn y of Y with 
(y) = j if

su
h a 
olumn exists. Otherwise it is de

j

. Then S is the

matrix 
onsisting of the last f 
olumns of Z.

We prove that S has the desired properties. By 
on-

stru
tion, we have QS � 0mod d. Sin
e Y is in Hermite

normal form, S is in triangular Hermite normal form. Fi-

nally, we must show that the entry s

e+j;j

generates �

e+j

for

1 � j � f . If the jth 
olumn of S is equal to a 
olumn of Y

this is true be
ause of the 
orresponding property of Y . As-

sume that the jth 
olumn of S is de

e+j

. Sin
e the 
olumns

of Y together with the ve
tors de

j

, 1 � j � n generate � it

follows that �

j

= d.

6 Analysis

The 
orre
tness of the algorithm given above is obvious

from Theorem 2. We 
omplete the proof of Theorem 1

by verifying the time and spa
e bounds given there. Let

N = max fm;ng, z = min fm;ng, L = log zkQk. The anal-

ysis of [8℄ shows that the 
omputation of Q

1

, d, and adjQ

1


an be a

omplished with O(emnz) arithmeti
 operations

on integers of size O(L) (our addition of the 
omputation

of adjQ

1

does not 
hange the bound). The redu
tion to

the 
ase rankQ = m, d > 0 involves only row and 
olumn

swaps, not arithmeti
. It takes en arithmeti
 operations on

numbers no larger than kQk to redu
e Q modulo d, and the

analysis of [3℄ says that O(en

2

) arithmeti
 operations on

numbers no larger than d

2

are required for the remainder of

the 
omputation of S outlined above. This proves Theorem

1.

7 Example

We work out the example

Q =

 

4 2 1 1

2 1 1 4

6 3 2 5

!

:

We 
ompute easily that e = 2, f = 2. Swapping rows and


olumns and then dis
arding the last row, we get

Q =

�

2 6 3 5

1 4 2 1

�

:

Write Q =

�

Q

1

Q

2

�

with both Q

1

and Q

2

inMat

2;2

(Z).

We easily 
ompute that d = 2, soQ

1

is nonsingular, and that

adjQ

1

=

�

4 �6

�1 2

�

:

(Of 
ourse we 
ould a
hieve the 
onditions on Q

1

and d with

many other sets of row and 
olumn swaps.)

It is not hard to verify that (using the notation of se
tion

5)

Y =

0

B

�

0 1

1 0

0 1

0 1

1

C

A

; Z =

0

B

�

2 0 0 1

0 1 0 0

0 0 2 1

0 0 0 1

1

C

A

;

S =

0

B

�

0 1

0 0

2 1

0 1

1

C

A

; S

2

=

�

2 1

0 1

�

:

A simple appli
ation of the formula of Theorem 2 then gives

R =

0

B

�

0 �7

�1 1

2 1

0 1

1

C

A

whi
h indeed is the HNF-basis for the kernel ofQ as modi�ed

in the �rst step. To re
over the kernel of the original Q, we

swap rows in a manner 
onsistent with the swaps of 
olumns

used earlier; the result is

0

B

�

�1 1

2 1

0 �7

0 1

1

C

A

:
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8 Timings

In this se
tion we give a brief indi
ation of the behavior

of an implementation of the algorithm using the LiDIA [2℄

number theory library. We report the CPU time required

to run the implementation on a SPARC Ultra for matri
es

of various sizes. In ea
h 
ase the entries of the matrix were

randomly sele
ted from the set f0; 1; 2; : : : ; 10g. (Matri
es

with su
h small entries are those for whi
h our algorithm is

most likely to be pra
ti
al; larger entries, of 
ourse, produ
e

larger d's.)

Dimensions Time required

50x51 4.82 s

50x75 8.31 s

80x81 32.72 s

80x120 56.96 s

100x101 1 m 26.06 s

100x150 2 m 46.76 s

130x131 4 m 37.01 s

130x200 9 m 22.44 s

150x151 9 m 2.06 s

150x200 14 m 9.29 s

180x181 21 m 4.15 s

180x240 33 m 27.81 s

200x201 35 m 16.23 s

200x250 50 m 0.64 s

250x251 1 h 38 m 2.85 s

250x325 2 h 31 m 58.89 s

300x301 3 h 54 m 48.17 s
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